Data-driven models of referential choice
Antecedent distance and beyond

Nils Norman Schiborr
University of Bamberg

7 December 2018
Referential choice

(1) *I went along with this old man, Mr Barnes.*

(2) *He was a nice old man.*

…

(3) ○○ ○ ○ used to have a team of four great horses.
Referential choice

influenced in some way by the preceding discourse, e.g.

- activation states (Chafe 1976, 1994)
- topic continuity (Givón 1983)
- accessibility (Ariel 1990[2014], 2004; Arnold 2010)
- givenness (Gundel et al. 1993)
- centering (Grosz et al. 1995)
- discourse prominence (Gordon & Hendrick 1997)
- and others (e.g. Kibrik 2000)
Accessibility marking scale

| less accessible | full name
| | long definite lexical NP
| | short definite lexical NP
| | last name
| | first name
| | lexical NP with distal demonstrative
| | lexical NP with proximal demonstrative
| | distal demonstrative
| | proximal demonstrative
| | stressed pronoun
| | unstressed pronoun
| | cliticized pronoun
| | verbal person agreement

| more accessible | zero

(adapted from Ariel 1990: 73)
accessibility theory

“provides one and the same account for expressions considered referential (e.g., proper names) [...] as well as for expressions considered anaphoric (e.g., pronouns) [...] It also does not view references to the speech situation (e.g., by deictics) as special.”

(Ariel 2006: 15, emphasis added)
in other words, speakers’ choice between, e.g.

(A) between a full, lexical noun phrase (the old man; Mr Barnes) and a pronominal NP (e.g. he), and

(B) between a pronoun and zero anaphora,

should be predictable from the same set of explanatory variables
Corpus data

a subset of the **Multi-CAST collection**: (Haig & Schnell 2015)

- Cypriot Greek (IE, Greek)
- English (IE, Germanic)
- Northern Kurdish (IE, Iranian)
- Sanzhi Dargwa (Nakh-Daghestanian, Dargin)
- Teop (Austronesian, Oceanic)
- Vera’a (Austronesian, Oceanic)

spoken, non-elicited, monologic **narratives**

(Hadjidas & Vollmer 2015; Schiborr 2015; Haig & Thiele 2015; Forker & Schiborr in prep.; Mosel & Schnell 2015; Schnell 2015)
Annotations

GRAID (Haig & Schnell 2014)
‘Grammatical relations and animacy in discourse’
- form of referring expressions
- marks zero anaphora
- delineates texts into clause units

RefIND (Schiborr & Schnell & Thiele 2017)
‘Referent indexing in natural-language discourse’
- identification and tracking of discourse referents
- enables calculation of anaphoric distances and frequencies
(4) **Sanzhi Dargwa** [sanzhi_devil_034]

\[
xun-ne-b \quad suk \quad b-ič-ib \quad k:urt:a
\]

road-**SPR-N** Ø meet **N-occur.PFV-PRET** fox

np:l 0.h:s other v:pred np.d:p

0002 0031

‘On the road (he) met a fox.’
(5) **Sanzhi Dargwa** [sanzhi_devil_038]

```
k:urt:a-l  b-ič:-ib  hel-i-j  cin-na  ʋež
fox-ERG  N-give.PFV-PRET  that-OBL-DAT  REFL.SG-GEN  hair
##  np.d:a  v:pred  pro.h:g  ln_refl.d:poss  np:p
0031  0002  0031  0032
```

‘The fox gave him one of its hairs.’
Sampling criteria

1. only referents that can be identified throughout a discourse (i.e. that are “trackable” in the sense of Schiborr et al. 2017: 3)

2. only referents with $n \geq 2$ total mentions

3. only second and subsequent mentions (i.e. excluding new introductions)

4. only third person mentions (i.e. excluding first/second person)
The model

explain the selection between

(A) lexical vs. non-lexical expressions, and
(B) among non-lexical expressions, pronouns vs. zero

via the explanatory variables

1. antecedent distance in clause units
2. frequency in recent discourse
3. mention in previous clause \((d = 1)\)
Sample statistics

<table>
<thead>
<tr>
<th>corpus</th>
<th>clauses</th>
<th>referents*</th>
<th>mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cypriot Greek</td>
<td>1 071</td>
<td>165</td>
<td>1 653</td>
</tr>
<tr>
<td>English</td>
<td>1 244</td>
<td>261</td>
<td>1 452</td>
</tr>
<tr>
<td>Northern Kurdish</td>
<td>1 389</td>
<td>153</td>
<td>2 167</td>
</tr>
<tr>
<td>Sanzhi Dargwa</td>
<td>1 618</td>
<td>275</td>
<td>1 977</td>
</tr>
<tr>
<td>Teop</td>
<td>1 272</td>
<td>180</td>
<td>1 688</td>
</tr>
<tr>
<td>Vera’a</td>
<td>2 377</td>
<td>241</td>
<td>3 158</td>
</tr>
<tr>
<td>totals</td>
<td>8 871</td>
<td>1 175</td>
<td>12 095</td>
</tr>
</tbody>
</table>

* with \(n \geq 2 \) mentions
(A) lexical vs. non-lexical

(1) antecedent distance in clause units

predicted value

[+lex] 1.0
[−lex] 0.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

(1) antecedent distance in clause units

[+lex] 1.0
[−lex] 0.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

predicted value

corpus

C. Greek
N. Kurdish
Teop
English
S. Dargwa
Vera’a
(A) lexical vs. non-lexical

(B) pronoun vs. zero

(1) antecedent distance in clause units

corpus

C. Greek
English
N. Kurdish
S. Dargwa
Teop
Vera’a
(A) lexical vs. non-lexical

(B) pronoun vs. zero

predicted value

[+lex] 1.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
[−lex] 0.0

(2a) frequency in previous 5 clause units

corpus

C. Greek
N. Kurdish
Teop
English
S. Dargwa
Vera’a
(A) lexical vs. non-lexical

(B) pronoun vs. zero

(2b) frequency in previous 15 clause units

corpus

- C. Greek
- N. Kurdish
- Teop
- English
- S. Dargwa
- Vera’a
(A) lexical vs. non-lexical

(B) pronoun vs. zero

predicted value

(2c) frequency since start of text (log scale)

corpus

C. Greek N. Kurdish Teop
English S. Dargwa Vera’a
(A) lexical vs. non-lexical

(B) pronoun vs. zero
Summary

in a sample of narrative data from six languages, the properties of the preceding discourse

- explain the broad distinction between **lexical** and **non-lexical expressions** reasonably well,
- but largely fail to do so for the distinction between **pronouns** and **zero**
Conclusions

in essence,
the data **do not corroborate** initial assumption of all types of referring expression being selected based on **different thresholds of the same criteria**
Conclusions

for the selection of zero over pronominal NPs, factors outside of discourse are at play, e.g.

- morphosyntax (e.g. number),
- agreement paradigms, entrenchment,
- humanness, ‘avoid non-human zero’ (Genetti & Crain 2003),
- priming, esp. with subjects,
- prosody (cf. Fretheim 1996; Mithun 1996),
- etc.

see also variationist studies on pronoun use
(e.g. Travis & Torres Cacoulls 2012; Meyerhoff & Walker 2015)
Going forward

not just hypothesis-testing,
but creation of cross-linguistic, “bottom-up”
models of referential choice

further development and refinement of corpora
and quantitative methods
all data will in the near future be freely available online at

Multi-CAST
Multilingual Corpus of Annotated Spoken Texts

https://lac2.uni-koeln.de/multicast/

— normally at —
https://lac.uni-koeln.de/multicast/
English
Sanzhi Dargwa
Cypriot Greek
Northern Kurdish
Persian
Coastal Balochi
Abkhaz
Hinuq
Tabasaran
Sanzhi Dargwa
Japanese
Mandarin
Jinghpaw
Burmese
Tondano
Tulil
Totoli
Sumbawa
Vera’a
Nafsan
Teop
References

References

Forker, Diana & Schiborr, Nils N. In progress. Multi-CAST Sanzhi Dargwa. In Haig, Geoffrey & Schnell, Stefan (eds.), Multi-CAST.

References

Hadjidas, Harris & Vollmer, Maria C. 2015. Multi-CAST Cypriot Greek. In Haig, Geoffrey & Schnell, Stefan (eds.), Multi-CAST.

References

Schnell, Stefan. 2015. Multi-CAST Vera’a. In Haig, Geoffrey & Schnell, Stefan (eds.), *Multi-CAST*.

Addendum A
Summaries of regression models
logistic regression model:

(1) expression \sim antecedent distance

<table>
<thead>
<tr>
<th>choice</th>
<th>corpus</th>
<th>obs(0)</th>
<th>obs(1)</th>
<th>model p</th>
<th>C</th>
<th>coeff. χ^2</th>
<th>coeff. p</th>
</tr>
</thead>
<tbody>
<tr>
<td>\pmlex</td>
<td>cypgreek</td>
<td>587</td>
<td>368</td>
<td><0.00001</td>
<td>0.771</td>
<td>127.97</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pmlex</td>
<td>english</td>
<td>492</td>
<td>184</td>
<td><0.00001</td>
<td>0.812</td>
<td>114.30</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pmlex</td>
<td>nkurd</td>
<td>700</td>
<td>480</td>
<td><0.00001</td>
<td>0.824</td>
<td>181.99</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pmlex</td>
<td>sanzhi</td>
<td>725</td>
<td>538</td>
<td><0.00001</td>
<td>0.751</td>
<td>161.30</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pmlex</td>
<td>teop</td>
<td>844</td>
<td>484</td>
<td><0.00001</td>
<td>0.778</td>
<td>199.89</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pmlex</td>
<td>veraa</td>
<td>1549</td>
<td>903</td>
<td><0.00001</td>
<td>0.790</td>
<td>422.89</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pmpro</td>
<td>cypgreek</td>
<td>390</td>
<td>197</td>
<td>0.00110</td>
<td>0.602</td>
<td>10.02</td>
<td>0.00155</td>
</tr>
<tr>
<td>\pmpro</td>
<td>english</td>
<td>38</td>
<td>454</td>
<td>0.01003</td>
<td>0.660</td>
<td>3.50</td>
<td>0.06136</td>
</tr>
<tr>
<td>\pmpro</td>
<td>nkurd</td>
<td>556</td>
<td>144</td>
<td>0.06474</td>
<td>0.587</td>
<td>3.68</td>
<td>0.05506</td>
</tr>
<tr>
<td>\pmpro</td>
<td>sanzhi</td>
<td>550</td>
<td>175</td>
<td>0.05215</td>
<td>0.543</td>
<td>3.97</td>
<td>0.04633</td>
</tr>
<tr>
<td>\pmpro</td>
<td>teop</td>
<td>398</td>
<td>446</td>
<td>0.16305</td>
<td>0.501</td>
<td>1.90</td>
<td>0.16769</td>
</tr>
<tr>
<td>\pmpro</td>
<td>veraa</td>
<td>681</td>
<td>868</td>
<td><0.00001</td>
<td>0.617</td>
<td>47.78</td>
<td><0.00001</td>
</tr>
</tbody>
</table>
logistic regression model:

(2a) expression ~ recent frequency (5 clauses)

<table>
<thead>
<tr>
<th>choice</th>
<th>corpus</th>
<th>obs(0)</th>
<th>obs(1)</th>
<th>model p</th>
<th>C</th>
<th>coeff. χ^2</th>
<th>coeff. p</th>
</tr>
</thead>
<tbody>
<tr>
<td>±lex</td>
<td>cypgreek</td>
<td>587</td>
<td>368</td>
<td><0.00001</td>
<td>0.739</td>
<td>121.19</td>
<td><0.00001</td>
</tr>
<tr>
<td>±lex</td>
<td>english</td>
<td>492</td>
<td>184</td>
<td><0.00001</td>
<td>0.781</td>
<td>88.69</td>
<td><0.00001</td>
</tr>
<tr>
<td>±lex</td>
<td>nkurd</td>
<td>700</td>
<td>480</td>
<td><0.00001</td>
<td>0.811</td>
<td>236.23</td>
<td><0.00001</td>
</tr>
<tr>
<td>±lex</td>
<td>sanzhi</td>
<td>725</td>
<td>538</td>
<td><0.00001</td>
<td>0.760</td>
<td>198.78</td>
<td><0.00001</td>
</tr>
<tr>
<td>±lex</td>
<td>teop</td>
<td>844</td>
<td>484</td>
<td><0.00001</td>
<td>0.771</td>
<td>206.75</td>
<td><0.00001</td>
</tr>
<tr>
<td>±lex</td>
<td>veraa</td>
<td>1549</td>
<td>903</td>
<td><0.00001</td>
<td>0.809</td>
<td>456.73</td>
<td><0.00001</td>
</tr>
<tr>
<td>±pro</td>
<td>cypgreek</td>
<td>390</td>
<td>197</td>
<td>0.00044</td>
<td>0.585</td>
<td>11.81</td>
<td>0.00059</td>
</tr>
<tr>
<td>±pro</td>
<td>english</td>
<td>38</td>
<td>454</td>
<td>0.02233</td>
<td>0.626</td>
<td>5.55</td>
<td>0.01853</td>
</tr>
<tr>
<td>±pro</td>
<td>nkurd</td>
<td>556</td>
<td>144</td>
<td>0.00621</td>
<td>0.570</td>
<td>7.27</td>
<td>0.00703</td>
</tr>
<tr>
<td>±pro</td>
<td>sanzhi</td>
<td>550</td>
<td>175</td>
<td>0.00063</td>
<td>0.581</td>
<td>11.20</td>
<td>0.00082</td>
</tr>
<tr>
<td>±pro</td>
<td>teop</td>
<td>398</td>
<td>446</td>
<td>0.77061</td>
<td>0.515</td>
<td>0.09</td>
<td>0.77060</td>
</tr>
<tr>
<td>±pro</td>
<td>veraa</td>
<td>681</td>
<td>868</td>
<td>0.32722</td>
<td>0.519</td>
<td>0.96</td>
<td>0.32722</td>
</tr>
</tbody>
</table>
logistic regression model:
(2b) expression ~ recent frequency (15 clauses)

<table>
<thead>
<tr>
<th>choice</th>
<th>corpus</th>
<th>obs(0)</th>
<th>obs(1)</th>
<th>model p</th>
<th>C</th>
<th>coeff. χ^2</th>
<th>coeff. p</th>
</tr>
</thead>
<tbody>
<tr>
<td>± lex</td>
<td>cypgreek</td>
<td>587</td>
<td>368</td>
<td><0.00001</td>
<td>0.703</td>
<td>75.43</td>
<td><0.00001</td>
</tr>
<tr>
<td>± lex</td>
<td>english</td>
<td>492</td>
<td>184</td>
<td><0.00001</td>
<td>0.729</td>
<td>49.62</td>
<td><0.00001</td>
</tr>
<tr>
<td>± lex</td>
<td>nkurd</td>
<td>700</td>
<td>480</td>
<td><0.00001</td>
<td>0.774</td>
<td>175.66</td>
<td><0.00001</td>
</tr>
<tr>
<td>± lex</td>
<td>sanzhi</td>
<td>725</td>
<td>538</td>
<td><0.00001</td>
<td>0.722</td>
<td>144.24</td>
<td><0.00001</td>
</tr>
<tr>
<td>± lex</td>
<td>teop</td>
<td>844</td>
<td>484</td>
<td><0.00001</td>
<td>0.738</td>
<td>151.40</td>
<td><0.00001</td>
</tr>
<tr>
<td>± lex</td>
<td>veara</td>
<td>1549</td>
<td>903</td>
<td><0.00001</td>
<td>0.787</td>
<td>395.59</td>
<td><0.00001</td>
</tr>
<tr>
<td>± pro</td>
<td>cypgreek</td>
<td>390</td>
<td>197</td>
<td>0.02848</td>
<td>0.551</td>
<td>4.71</td>
<td>0.02999</td>
</tr>
<tr>
<td>± pro</td>
<td>english</td>
<td>38</td>
<td>454</td>
<td>0.21058</td>
<td>0.561</td>
<td>1.66</td>
<td>0.19737</td>
</tr>
<tr>
<td>± pro</td>
<td>nkurd</td>
<td>556</td>
<td>144</td>
<td>0.61956</td>
<td>0.512</td>
<td>0.25</td>
<td>0.62041</td>
</tr>
<tr>
<td>± pro</td>
<td>sanzhi</td>
<td>550</td>
<td>175</td>
<td>0.00183</td>
<td>0.573</td>
<td>9.26</td>
<td>0.00234</td>
</tr>
<tr>
<td>± pro</td>
<td>teop</td>
<td>398</td>
<td>446</td>
<td>0.40993</td>
<td>0.523</td>
<td>0.68</td>
<td>0.41005</td>
</tr>
<tr>
<td>± pro</td>
<td>veara</td>
<td>681</td>
<td>868</td>
<td>0.24941</td>
<td>0.517</td>
<td>1.32</td>
<td>0.24997</td>
</tr>
</tbody>
</table>
logistic regression model:
(2c) expression ~ frequency since start of text (log scale)

<table>
<thead>
<tr>
<th>choice</th>
<th>corpus</th>
<th>obs(0)</th>
<th>obs(1)</th>
<th>model p</th>
<th>C</th>
<th>coeff. χ^2</th>
<th>coeff. p</th>
</tr>
</thead>
<tbody>
<tr>
<td>± lex</td>
<td>cypgreek</td>
<td>587</td>
<td>368</td>
<td><0.00001</td>
<td>0.617</td>
<td>35.58</td>
<td><0.00001</td>
</tr>
<tr>
<td>± lex</td>
<td>english</td>
<td>492</td>
<td>184</td>
<td>0.00001</td>
<td>0.617</td>
<td>18.57</td>
<td>0.00002</td>
</tr>
<tr>
<td>± lex</td>
<td>nkurd</td>
<td>700</td>
<td>480</td>
<td><0.00001</td>
<td>0.696</td>
<td>125.58</td>
<td><0.00001</td>
</tr>
<tr>
<td>± lex</td>
<td>sanzhi</td>
<td>725</td>
<td>538</td>
<td><0.00001</td>
<td>0.617</td>
<td>48.39</td>
<td><0.00001</td>
</tr>
<tr>
<td>± lex</td>
<td>teop</td>
<td>844</td>
<td>484</td>
<td><0.00001</td>
<td>0.680</td>
<td>113.02</td>
<td><0.00001</td>
</tr>
<tr>
<td>± lex</td>
<td>veraa</td>
<td>1549</td>
<td>903</td>
<td><0.00001</td>
<td>0.652</td>
<td>167.10</td>
<td><0.00001</td>
</tr>
<tr>
<td>± pro</td>
<td>cypgreek</td>
<td>390</td>
<td>197</td>
<td>0.15899</td>
<td>0.542</td>
<td>1.98</td>
<td>0.15905</td>
</tr>
<tr>
<td>± pro</td>
<td>english</td>
<td>38</td>
<td>454</td>
<td>0.42880</td>
<td>0.552</td>
<td>0.64</td>
<td>0.42489</td>
</tr>
<tr>
<td>± pro</td>
<td>nkurd</td>
<td>556</td>
<td>144</td>
<td>0.29621</td>
<td>0.524</td>
<td>1.10</td>
<td>0.29463</td>
</tr>
<tr>
<td>± pro</td>
<td>sanzhi</td>
<td>550</td>
<td>175</td>
<td>0.12121</td>
<td>0.539</td>
<td>2.40</td>
<td>0.12127</td>
</tr>
<tr>
<td>± pro</td>
<td>teop</td>
<td>398</td>
<td>446</td>
<td>0.08530</td>
<td>0.549</td>
<td>2.95</td>
<td>0.08581</td>
</tr>
<tr>
<td>± pro</td>
<td>veraa</td>
<td>681</td>
<td>868</td>
<td>0.00003</td>
<td>0.552</td>
<td>17.02</td>
<td>0.00004</td>
</tr>
</tbody>
</table>
logistic regression model:

(3) expression ~ mentioned in previous clause

<table>
<thead>
<tr>
<th>choice</th>
<th>corpus</th>
<th>obs(0)</th>
<th>obs(1)</th>
<th>model p</th>
<th>C</th>
<th>coeff. χ^2</th>
<th>coeff. p</th>
</tr>
</thead>
<tbody>
<tr>
<td>\pm lex</td>
<td>cypgreek</td>
<td>587</td>
<td>368</td>
<td><0.00001</td>
<td>0.723</td>
<td>165.40</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pm lex</td>
<td>english</td>
<td>492</td>
<td>184</td>
<td><0.00001</td>
<td>0.717</td>
<td>82.94</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pm lex</td>
<td>nkurd</td>
<td>700</td>
<td>480</td>
<td><0.00001</td>
<td>0.780</td>
<td>308.36</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pm lex</td>
<td>sanzhi</td>
<td>725</td>
<td>538</td>
<td><0.00001</td>
<td>0.681</td>
<td>154.22</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pm lex</td>
<td>teop</td>
<td>844</td>
<td>484</td>
<td><0.00001</td>
<td>0.727</td>
<td>227.84</td>
<td><0.00001</td>
</tr>
<tr>
<td>\pm lex</td>
<td>veraa</td>
<td>1549</td>
<td>903</td>
<td><0.00001</td>
<td>0.734</td>
<td>446.19</td>
<td><0.00001</td>
</tr>
</tbody>
</table>

\pm pro	cypgreek	390	197	<0.00001	0.597	22.73	<0.00001
\pm pro	english	38	454	0.00015	0.650	10.97	0.00093
\pm pro	nkurd	556	144	0.00004	0.586	17.58	0.00003
\pm pro	sanzhi	550	175	0.17205	0.529	1.87	0.17091
\pm pro	teop	398	446	0.69791	0.506	0.15	0.69787
\pm pro	veraa	681	868	<0.00001	0.611	84.50	<0.00001
Addendum B
Raw data distributions
Referential choice

(1) antecedent distance in clause units

corpus

<table>
<thead>
<tr>
<th></th>
<th>C. Greek</th>
<th>N. Kurdish</th>
<th>Teop</th>
<th>S. Dargwa</th>
<th>Vera’a</th>
</tr>
</thead>
<tbody>
<tr>
<td>density</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>

response

<table>
<thead>
<tr>
<th></th>
<th>–lex, zero</th>
<th>+lex, pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>density</td>
<td>0.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>
(2a) frequency in previous 5 clause units

corpus

- C. Greek
- English
- N. Kurdish
- S. Dargwa

response

- −lex, zero
- +lex, pro
(2b) frequency in previous 15 clause units

corpus

- C. Greek
- English
- N. Kurdish
- S. Dargwa

response

- −lex, zero
- +lex, pro
Figure 3: Graph showing the relationship between density and the mention of an element in the previous clause. The x-axis represents the density of mention in the previous clause, and the y-axis represents the density of mention in the current clause. The lines represent different corpora: English, Greek, Kurdish, S. Dargwa, Teop, and Vera’a. The responses are shown for different lexical and pro/zero choices.

Legend:
- C. Greek
- N. Kurdish
- S. Dargwa
- Teop
- Vera’a

- lex, zero
- +lex, pro